Verification of NMME Extreme
Seasonal Temperatures

Dan C. Collins
NOAA Climate Prediction Center



DATA

NMME hindcast:
— 12 x 1-month lead seasonal hindcasts

(e.g., November 1st initialization predictions of DJF
Temperature)

— 29 year hindcasts, 1982 to 2010
GHCN+CAMS 2-m temperature observations

Considering the skill and calibration of probability forecasts for
bottom and top deciles (i.e. 10t" and 90" percentile forecasts)

... and calibration of ensemble probabilities for above and
below normal terciles simultaneously



METHODS

1. Count: Probabilities based on percent count of ensemble
members

Model climatological mean removed
Variance of members corrected

Terciles (+- 0.43 standard deviations) and deciles (+- 1.28 standard
deviations) derived from normal distribution fit to hindcasts

Cross-validated (Leave 1-year out) calculation of model mean and
standard deviations

2. Ensemble Regression or EReg probability calibration
methodology (Unger et al 2009).

Removes systematic bias and calibrates probability based
on hindcast correlation

Cross-validated regression (Leave 1-year out) calculation of
all regression parameters and probabilities

Fit Gaussian distribution around each ensemble member



Multi-model ensemble count forecasts
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1)

2)

Ensemble Regression

Derive a regression equation for the least-squared
error solution between the ensemble members
and the observation, based on the ensemble mean
and observations.

F*(m)= aF(m)+ b

Expected residual error distribution of each
member based on expected MSE of ensemble
mean minus average ensemble spread.
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Multi-model ensemble EReg calibrated forecasts
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Calibration makes maps
equally reliable and nearly
equally skillful , but not the
same.



Seasonal Forecasting of Extremes & MME

Low predictability & extremes due to signal+noise
Some individual models have 10 ensemble members ->

—  Poor resolution of tails of distribution (extremes)

Probabilistic Outlooks for categorical forecasts
. 3-category tercile forecasts (Above and Below normal)
. Probability of extremes should be consistent with tercile forecasts

Correlation used to adjust spread of model

. Realistic probabilities representing hindcast skill

. Improves reliability, while maintaining resolution of events
. Brier Skill Score as metric (Resolution + Reliability)

Multi-Model Ensembles
. Many ensemble members reducing noise and canceling errors

. Better resolution of probability distribution, including tails (i.e.
extremes)




Variations in the mean and spread of ensemble members:
Probability of extremes < -1.28 sigma, or > +1.28 sigma
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Cross-validated DJF Correlation
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Cross-validated JJA Correlation
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Each individual model’s PDF is calibrated to improve reliability
(DJF Terciles shown)

EReg with all individual models ->
improved reliability
e NMME improved both by MME
combination & calibration
o « Combined NMME is not adjusted
for multi-model correlation




Combined NMME Count & EReg Tercile Probability Reliability
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Combined NMME Count & EReg Extreme Probability Reliability

e Calibration of PDF
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Combined NMME Count & EReg Extreme Probability Reliability
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Combined NMME Count & EReg Extreme Probability Reliability

e Calibration of PDF
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Four seasons 10t (top) and 90" (2"9 row) percentile EReg hindcast
Brier Skill Scores compared to below and above normal tercile BSS
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North America average Brier Skill Scores
DJF climatological 10t (blue) and 90t (red) percentile hindcasts
8 models and the combined NMME, bias corrected Count (bright) &
Ensemble Regression or Ereg calibrated (darker colors)
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North America average Brier Skill Scores
DJF climatological 10t (blue) and 90t (red) percentile hindcasts
8 models and the combined NMME, bias corrected Count (bright) &
Ensemble Regression or Ereg calibrated (darker colors)
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North America average Brier Skill Scores
All 12 seasons 10%" (blue) and 90t (red) percentile hindcasts
*Combined NMMIE (far right)
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North America average Brier Skill Scores

All 12 seasons 10%" (blue) and 90t (red) percentile hindcasts
*Combined NMMIE (far right)
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Combined NMME has positive skill in all seasons.
Not always the greatest skill, but consistently near the best model



Results & Conclusions

Skill of tercile probabilities of seasonal forecasts implies
skill of extremes

. Skill in extreme forecasts in same regions as tercile forecasts

Patterns of skill of 10t and 90t percentile forecasts
similar; Differences appear related to decadal trends

While individual ensemble models often have negative
skill when forecasting extremes, on average over North
America, the combined NMME is found to have skill
when forecasting extremes in all seasons

Regression calibration successfully removes areas of
negative skill; however, combined NMME forecasts are
sometimes under-confident
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